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Abstract. We study the delta function a(&, &), where & is a point in the Minkowski space 
and quantity (6, 6) = t 2  - x: - x: - x: = t 2  - r2 .  This generalised function has its support on 
the light cone t * r = 0, which has an interesting singularity at its vertex (0,O). We present 
the derivatives of the multilayers spread over this cone. Our analysis is facilitated by the 
interplay between the theory of distributions (generalised functions) and the theory of 
singular surfaces. 

1. Introduction 

The aim of the present work is to present an appropriate framework that permits us 
to study various generalised functions with support on the light cone t * r = 0 and to 
obtain the formulae for general partial derivatives of such generalised functions. 

Formulae for the derivatives of functions discontinuous across a regular surface 
as well as the corresponding analysis of the associated multilayers have been obtained 
by several authors (Costen 1981, Estrada and Kanwal 1980, 1985a,b, 1987a,b, 
Vladimirov 1971). In particular, the general formulae for the arbitrary derivatives of 
multilayers are given by Estrada and Kanwal (1987a). 

However, these formulae cannot be applied to the case of the light cone t * r = 0 
because this spacetime surface is singular at the point (0 ,O) .  Accordingly, the formulae 
valid for regular surfaces should be modified by the addition of suitable distributions 
concentrated at (0, 0 ) ,  i.e. distributions of the form 

P)( t)s"l'(xl)s"~'(xz)s'm3'(X3). 

The action of certain partial differential operators, particularly the operator 0' = 
V2-a2af2, on distributions such as s( t  - r ) / r  is well known (De Jager 1970, Jones 1982, 
Kanwal 1983). However, the extension of those results to general partial differential 
operators does not seem simple within the framework of this analysis. The situation 
is somewhat similar to that of the function l / r k  for which the action of the operator 
Vz, and its powers, has been well understood for a long time, but for which the general 
partial derivatives were not obtained until recently (Blaive and Metzger 1984, Estrada 
and Kanwal 1985b). 

In this paper we give a unified method for constructing generalised functions 
supported on the light cone ti r = 0. We do this as follows. Instead of considering 
functions g( t, x) defined in the cone we consider functions of the formf( t, y )  = g( t, t y )  
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defined in the cylinder t 3 0, IyI = 1. Accordingly, the multilayers supported on the 
light cone take the form f( t ,  y ) d  r S (  t - r ) ,  where f is a generalised function in the 
cylinder and d r stands for the multilayer distribution. This procedure enables us to 
extend the formulae valid for regular surfaces and in particular to obtain the derivatives 
of such multilayers. An important feature of this analysis is that the computations are 
simple to carry out and easy to generalise by using the properties of the delta function 
instead of having to rely on just the basic definitions (Parrott 1986). 

2. Basic definitions 

Let the x space, x = (x, , x2, x3), be denoted by R3 and let t denote the time. If 5 = ( t ,  x), 
then the quantity 

(5,5) = t 2  - lx12= t 2  - rz = ( t  - r ) ( t  + r )  (2 .1)  
is the square of the length in the Minkowski space from the origin ( 0 , O )  to the point 
5. Accordingly, the Dirac delta function a((& 5)) has the support on the light cone 
t * r = 0 .  

Recall the formula 

where f ( x )  is a function with simple zero at x = a such that f ( a )  = 0, f ’ (a )  # 0, and 
g ( x )  is a function with simple zero at x = b # a such that g (  b )  = 0, g ’ ( b )  # 0. This 
formula yields 

S ( t - r )  S ( t + r )  S ( ( 5 ,  6 ) )  = S (  ( t  - r ) (  t + r ) )  = -+ - 
2r 2r (2 .3)  

if either t is fixed (and t # 0) or r is fixed (and r f 0). 
We have recently presented an interplay between the theory of distributions and 

the theory of singular surfaces (Estrada and Kanwal 1980, 1985a, b, 1987a, b, Kanwal 
1983). However, the formulae that we have presented in these references cannot be 
directly applied to the present situation because the cone t * r = 0 (the support of the 
delta function) has a singularity at the point (0 ,O) .  But by crafting some additional 
analysis we can analyse the delta function a((& 5)) and its various derivatives. For 
this purpose we need the concept of multilayers on a surface of discontinuity C(t,  x) 
which in the present case is the light cone t - r = 0. 

The basic distribution concentrated on a moving surface C (  t, x) is the delta function 
6(Z( t, x)) whose action on the test function +( t, x) (the space of C“ test function with 
compact support) (Kanwal 1983) is 

(S t% 4 )  = Im J”,.,, +(t ,  x)  d S  d t  (2.4) 
-m 

where d S  is the surface element on C .  The second surface distribution that we need 
in our discussion is the ‘normal derivative’ Sr(C) defined as 

a 
ax, Sr(C) = ni- (S(Z))  ( 2 . 5 )  

where ni are the components of the unit normal vector n to U, and we have used the 
summation convention. 
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Another closely related surface distribution is the normal derivative operator d,S(Z) 
given by 

These three surface distributions are related as follows: 

d,S(Z) = S'(Z) -2flS(Z) (2.7) 
where fl is the mean curvature of Z. The distributions S(Z) and d,S(Z) display the 
single layer and double layer of charge of unit density. 

The delta derivative S / S t  is defined as 

and G is the normal speed of the surface Z(t ,  x). It is the derivative as apparent to a 
non-relativistic observer moving with the front Z. Similarly 

Sf a f  d f  n, - 
Sx, axi dn 

- 

is the surface derivative with respect to the Cartesian coordinates of the surrounding 
space (Kanwal 1983). 

The use of the S derivatives as given in (2.8) and (2.9) enable us to derive the 
first-order distributional derivatives of the simple layer fS(X). Indeed, 

(2.10) ~ ( ( f s ( Z ) ) = ~ S ( P ) - G j S ' ( Z ) = ( ~ - 2 n f ) S ( Z ) - G f d n S ( X )  a ss' 
a t  

and 
- 

(2.11) 

a Sf -((fs(Z))=-S(Z)+nfs '(Z)= 
ax, sx, 

where the bar denotes the distributional derivative. 
The general multilayer fdf:S(Z) is defined as 

(2.12) 

Note that df: is not defined as the Pth power of the operator d,. 

surface distribution is S( t - r ) :  
In the present problem the surface Z( t, x) is the light cone t - r = 0 so that the basic 

+( t, x) dS(x) d t  = (2.13) 

where we have put x = ty, and S ,  is the sphere of radius unity in the x space R3. 
Similarly, the distribution df:S( t - r ) ,  P 3 1, is 

(2.14) 

Note that the normal derivatives are discontinuous at (0,O). Fortunately, this discon- 
tinuity causes no problem since dP+/dnP is integrable near t f r = 0. 

( d  f:S( t - r ) ,  4( t ,  x)) = (- 1)'( S( t - r ) ,  dP4/dn '). 
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3. Mathematical analysis 

As in relation (2 .13)  it is convenient to use the coordinates ( t ,  y )  with lyl= 1, t 2 0 to 
describe the points of the forward cone t = r by putting x = ty. This defines a map 
from the half-cylinder S ,  x [0, CO) onto the cone. If 4 is a member of the class 9 ( R  x R3) 
of test functions (Kanwal 1983), then its restriction to the cone gives rise to an element 
&( t, y )  = 4( t ,  t y )  of 9( S ,  x [0, CO)) .  Actually, the same is true of each normal derivative 
dP4/dnp, because even though the function is discontinuous at (0,O) the associated 
function in the cylinder is smooth. These considerations suggest that the appropriate 
multilayers fd:S(t - r)  are those where f~ 9’(S, x [0, CO]), and where 9‘ is the space 
dual to 9. They are defined’as 

(S(t,y)dRW-r), 4(t> x))= ( - 1 ) ‘ ( t 2 f ( f , y ) ,  dP4(f ,  tv)/dnP) (3.1) 
where the last operation takes place in 9’(Sl x [0, C O ] )  x 9(S, x [0 ,  C O ] ) .  

Let us now observe that the relation ( 3 . 1 )  immediately gives 

S (  t )d  :S ( t  - r )  = S’( t)d RS( t - r )  = 0. ( 3 . 2 )  
Next, we attempt to find an expression for t ) d ; S (  t - r )  for k 2 2.  For this purpose, 
we start with t ) S (  t - r )  by introducing 

W t )  = 4(t, t y )  dS(y) I,, 
so that 

the function @ ( t ) :  

(3.3) 

2 ( k )  ( - l ) k k !  
( k - 2 ) !  

( s ‘ k ’ ( t ) s ( t - r ) ,  4 ( t , x ) ) = ( t  s ( t ) , @ ( t ) ) = ~ @ ‘ ( k - 2 ) ( ~ ) .  ( 3 . 4 )  

But using the value (Estrada and Kanwal 1985b) 

4T 
y:” dS(y) = - 2 m + l  c, = c,,~ = 

we obtain 

(3.5) 

where [ q / 2 ]  is the greatest integer less than or equal to 4 / 2 .  Thus, 

S” (  t ) S (  t - r )  = ~ T S (  t ) S  (x) ( 3 . 7 )  
and more generally 

A similar analysis yields 

In the next stage we need some geometric quantities associated with the cone 
t - r = 0 and use the notation as given by Kanwal(1983). The symmetric surface tensor 
Fij 1 

pij = an,/ Sxj 
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is the second fundamental form of the surface, where n, is the unit vector and 6/6x, 
stands for the surface differentiation. The symmetry of this tensor is preserved even 
with respect to time, since 

plt = an,/ at = a (  - G ) /  ax, = p,, 

where G is the normal speed of the surface. Furthermore, we denote by br) the entries 
of the rth power of matrix p, and set 

p , ( O )  = 6 - n 
0 V I n ]  

so that 

P ( 3 )  ,, - - P (2 )  ,k Pk,. . . P;' = /-bU(r-m) ik Pkj ( m )  * P!;) = PikPkJ P ( L )  = 
q Pq = w a x ,  

Also 

p,ll = -GG/St. 

The value of the mean curvature R is 
-1 2PZI 

where i is summed. 

simple form: 
For the cone t - r = 0, the above-mentioned geometrical quantities take the following 

( P I -  - p  a . , -  ni = xi/ t P V  - - t  ( q ninj) 

R =  - l / t  G = l  Pit = Ptt = 0. 

Next, we use formulae (2 .10)  and (3 .10)  and get 

a w 2f 
a t  

( f d  f;'S( t - r )) = - f d  ( t - r )  + (g + --) d f;'S ( t - r). 

(3 .10)  

(3 .11)  

Observe that the division f ( t , y ) / t  does not give a uniquely determined distribution 
since the general solution of the division problem contains an arbitrary multiple of 
8 ( t ) .  But this causes no problem because of relation ( 3 . 2 ) .  Similarly, from relations 
(2 .11)  and (3 .10)  we find that 

'! " 2 n i f  d f ; ' S ( t - r ) .  (3 .12)  
i ( f d P 6 ( t - r ) )  a = f n , d f ; ' " ' t ( t - r ) +  

M = O  ~ ~ ( z - 7 )  M 

Here also, we have to be careful because we again have the division problem of the form 

and such a problem gives rise to P - M arbitrary constants. However, a moment's 
reflection will convince the reader that it really does not matter as to which solutions 
of the division problem are taken, as long as the solutions are consistent in the sense 
that if gk is the solution of the division f /  t k  that is chosen as the solution of the 
division problem then tgk is the solution that should be taken for the division f / t k - ' .  

t - r )  the distribution Let us denote by ( 1 1  t k ) d  

w( y) d ( t - r )  
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where pf stands for the pseudofunction in the sense of the Hadamard finite part and 
where H ( t )  is the Heaviside function. The time derivatives of ( l / t k ) d r S ( t - r )  can 
be obtained from (3.11) as follows: 

) d  : S (  t - r )  1 2-k  (-l)ks'k'(t) --- - d : + ' S ( t - r ) + ( F +  h !  
t k  

or 
1 2 - k  

dFi16( t - r )+tk+l  d : S ( t - r )  

(3.13) 

where we have used (3.9) and the relation (Jones 1982, Kanwal 1983, Lighthill 1957) 

As a particular case we obtain 
1 

at  t 
-- a ( " )  =-- d , S ( t -  r ) + T  S ( t  - r ) .  (3.14) 

Higher-order time derivatives can be obtained by repeated application of formula 
(3.13). As a special case we get 

a2 s ( t - r )  1 2 
at2  t -( -> = ; d i S (  t - r )  - 1 d,S( t - r )  + 457S( t ) S ( x )  (3.15) 

and more generally, 

(3.16a) 

A similar analysis yields 

Let us now consider the space derivatives. Using (3.12) we obtain 
P !  ni '(4 d r a ( t  - r ) )  =; d!?'S(t - r )  - 2 1 7 t k + P - M + l  d :ti( t - r ) .  axi t M = O  M 

In particular, 

(3.17) 

(3.18) 

(3.19) 
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The mixed space and time derivatives can then be obtained by combining formulae 
(3.13) and (3.18). In order to do that it will be to our advantage to compute the value 
of the generalised function 

n , s (k ) ( t )d :6 ( t  - r ) .  

In the case P = 0 and +( t, x) is a test function of 9 ( R  x R3) we obtain 

where 

But since 

we obtain 

(3.20) 

(3.21) 

(3.22) 

We mention the special cases: 

n i S ( k ) ( t ) S ( t - r ) = O  k s 2  

n,S”’(t)S(t-  r )  = 87rS(t)DiS(x). 

A similar study gives 

Using (3.23) we readily obtain the mixed derivatives as 

-(- a’ 1 d:S( t  - 
a tax ,  t k  

( P S k - 1 ) P !  ni 
+ 2  c k+Z+P- M d r S ( t  - r )  

M = O  M !  

In particular, 

(3.24) 

(3.25) 
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The second-order space derivatives take the form 

(A d ; d ( t  - r )  
ax, axj t 

n.n. 6, - 5 n.n. 
='I d r+2S( t - r )  + t k + l  " d ; + ' S ( t - r )  

t k  

(3.26) 

Putting i = j and summing we get 

(3.27) 

Special cases include 

( 6 ,  - 5n,nj) 
t2  

( 6 ,  - 3 n,nj) 
t3 

- 2 ( S ( t ; r ) )  ~ -11 n;. 
ax, axj 

S ( t  - r )  (3.28) d,S(t - r )  - - d i S ( t - r ) +  

and 

As a check on our formulae we subtract (3.29) from (3.15) and get 

(3.29) 

(3.30) 

which is a well known formula. 

a distributional analysis for delta functions concentrated on the light cone. 
The analysis for the second factor in (2.3) is similar. The'reby, we have completed 

4. Summary 

We have stressed the interplay between some concepts of generalised functions and 
differential geometry and have analysed the multilayers f( t, y ) d  ;a( t - r )  spread over 
the light cone. The vertex of the cone is a singular point on this surface. By a simple 
coordinate adjustment we have defined a map from the half-cylinder S, x [O,m] onto 
the cone, where SI is the sphere of radius unity. 

Various interesting derivatives such as ( z / a t ) ' ( 6 (  t - r ) /  t )  and ni6(k)( t ) d r S (  t - r )  
have been presented. 
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